七星论坛六合彩

2018年12月01日 22:24 来源:石家庄新闻网

Thus, to the end of the 1901 experiments, Wilbur Wright provided a fairly full account of what was accomplished; the record shows an amount of patient and painstaking work almost beyond belief—it was no question of making a plane and launching it, but a business of trial and error, investigation and tabulation166 of detail, and the rejection time after time of previously accepted theories, till the brothers must have felt that the solid earth was no longer secure, at times. Though it was Wilbur who set down this and other records of the work done, yet the actual work was so much Orville’s as his brother’s that no analysis could separate any set of experiments and say that Orville did this and Wilbur did that—the two were inseparable. On this point Griffith Brewer remarked that ‘in the arguments, if one brother took one view, the other brother took the opposite view as a matter of course, and the subject was thrashed to pieces until a mutually acceptable result remained. I have often been asked since these pioneer days, “Tell me, Brewer, who was really the originator of those two?” In reply, I used first to say, “I think it was mostly Wilbur,” and later, when I came to know Orville better, I said, “The thing could not have been done without Orville.” Now, when asked, I find I have to say, “I don’t know,” and I feel the more I think of it that it was only the wonderful combination of these two brothers, who devoted their lives together for this common object, that made the discovery of the art of flying possible.’

‘We had not been flying long in 1904 before we found that the problem of equilibrium had not as yet been entirely solved. Sometimes, in making a circle, the machine would turn over sidewise despite anything the operator could do, although, under the same conditions in ordinary straight flight it could have been righted in an instant. In one flight, in 1905, while circling round a honey locust-tree at a height of about 50 feet, the machine suddenly began to turn up on one wing, and took a course toward the tree. The operator,173 not relishing the idea of landing in a thorn tree, attempted to reach the ground. The left wing, however, struck the tree at a height of 10 or 12 feet from the ground and carried away several branches; but the flight, which had already covered a distance of six miles, was continued to the starting point.

‘However, there is another way of flying which requires no artificial motor, and many workers believe that success will come first by this road. I refer to the soaring flight, by which the machine is permanently sustained in the air by the same means that are employed by soaring birds. They spread their wings to the wind, and sail by the hour, with no perceptible exertion beyond that required to balance and steer themselves.163 What sustains them is not definitely known, though it is almost certain that it is a rising current of air. But whether it be a rising current or something else, it is as well able to support a flying machine as a bird, if man once learns the art of utilising it. In gliding experiments it has long been known that the rate of vertical descent is very much retarded, and the duration of the flight greatly prolonged, if a strong wind blows up the face of the hill parallel to its surface. Our machine, when gliding in still air, has a rate of vertical descent of nearly 6 feet per second, while in a wind blowing 26 miles per hour up a steep hill we made glides in which the rate of descent was less than 2 feet per second. And during the larger part of this time, while the machine remained exactly in the rising current, there was no descent at all, but even a slight rise. If the operator had had sufficient skill to keep himself from passing beyond the rising current he would have been sustained indefinitely at a higher point than that from which he started. The illustration shows one of these very slow glides at a time when the machine was practically at a standstill. The failure to advance more rapidly caused the photographer some trouble in aiming, as you will perceive. In looking at this picture you will readily understand that the excitement of gliding experiments does not entirely cease with the breaking up of camp. In the photographic dark-room at home we pass moments of as thrilling interest as any in the field, when the image begins to appear on the plate and it is yet an open question whether we have a picture of a flying machine or merely a patch of open sky. These slow glides in rising current probably hold out greater hope of extensive practice than any other method164 within man’s reach, but they have the disadvantage of requiring rather strong winds or very large supporting surfaces. However, when gliding operators have attained greater skill, they can with comparative safety maintain themselves in the air for hours at a time in this way, and thus by constant practice so increase their knowledge and skill that they can rise into the higher air and search out the currents which enable the soaring birds to transport themselves to any desired point by first rising in a circle and then sailing off at a descending angle. This illustration shows the machine, alone, flying in a wind of 35 miles per hour on the face of a steep hill, 100 feet high. It will be seen that the machine not only pulls upward, but also pulls forward in the direction from which the wind blows, thus overcoming both gravity and the speed of the wind. We tried the same experiment with a man on it, but found danger that the forward pull would become so strong, that the men holding the ropes would be dragged from their insecure foothold on the slope of the hill. So this form of experimenting was discontinued after four or five minutes’ trial.

First flight of first power-driven machine, 17th December, 1903, near Kill Devil Hill, Kitty Hawk, N.C. Starting rail on left. Orville Wright piloting machine.

Since Li Xiaolu’s name was dragged in Joker’s list of lovers, netizens once again became curious about her marriage with actor Jia Nailiang. Rumors even surfaced claiming that Nailiang is bisexual and he and Xiaolu have separate affairs of their own in the marriage. Angered by the gossip, Nailiang responded on Weibo, “I’m doing fine on my own, and don’t want to be embroiled in any more gossip.”

These considerations tended to turn the minds of those interested in aerostation to consideration of the hydrogen balloon evolved by Professor Charles. Certain improvements had been made by Charles since his first construction; he employed rubber-coated silk in the construction of a balloon of 30 feet diameter, and provided a net for distributing the pressure uniformly over the surface of the envelope; this net covered the top half of the balloon, and from its lower edge dependent ropes hung to join on a wooden ring, from which the car of the balloon was suspended—apart from the extension of the net so as to cover in the whole of the envelope, the spherical balloon of to-day is virtually identical with that of Charles in its method of construction. He introduced the valve at the top of the balloon, by which escape of gas could be controlled, operating his valve by means of ropes which depended to the car of the balloon, and he also inserted a tube, of about 7 inches diameter, at the bottom of the balloon, not only for purposes of inflation, but also to provide a means of escape for gas in case of expansion due to atmospheric conditions.

Henry Farman, who began his flying career with a Voisin machine, evolved from it the aeroplane which bore his name, following the main lines of the Voisin type fairly closely, but making alterations in the controls, and in the design of the undercarriage, which was somewhat elaborated, even to the inclusion of shock absorbers. The seven-cylinder 50 horse-power Gnome rotary engine was fitted to the Farman machine—the Voisins had fitted an eight-cylinder Antoinette, giving 50 horse-power at 1,100 revolutions per minute, with direct drive to the propeller. Farman reduced the weight of the machine from the 1,450 lbs. of the Voisins182 to some 1,010 lbs. or thereabouts, and the supporting area to 450 square feet. This machine won its chief fame with Paulhan as pilot in the famous London to Manchester flight—it is to be remarked, too, that Farman himself was the first man in Europe to accomplish a flight of a mile.

Joyce Ndalichako, Tanzania's Minister of Education, Science, Technology and Vocational Training, said the library will enable university students from across the country widen their knowledge and skills for the welfare of the country.

The appearance of the machine prepared for flight was exceedingly light and graceful, giving an impression to all observers of being capable of successful flight.

That genius exemplified the antique saw regarding the infinite capacity for taking pains, for the Langley Memoir shows that as early as 1891 Langley had completed a set of experiments, lasting through years, which proved it possible to construct machines giving such a velocity to inclined surfaces that bodies indefinitely heavier than air could be sustained upon it and propelled through it at high speed. For full account (very full) of these experiments, and of a later series leading up to the construction of a series of ‘model aerodromes’ capable of flight under power, it is necessary to turn to the bulky memoir of Smithsonian origin.

For the gliding experiments of 1901 it was decided to retain the form of the 1900 glider, but to increase155 the area to 308 square feet, which, the brothers calculated, would support itself and its operator in a wind of seventeen miles an hour with an angle of incidence of three degrees. Camp was formed at Kitty Hawk in the middle of July, and on July 27th the machine was completed and tried for the first time in a wind of about fourteen miles an hour. The first attempt resulted in landing after a glide of only a few yards, indicating that the centre of gravity was too far in front of the centre of pressure. By shifting his position farther and farther back the operator finally achieved an undulating flight of a little over 300 feet, but to obtain this success he had to use full power of the rudder to prevent both stalling and nose-diving. With the 1900 machine one-fourth of the rudder action had been necessary for far better control.

Let it not be thought that in this comment there is any desire to derogate from the position which Ader should occupy in any study of the pioneers of aeronautical enterprise. If he failed, he failed magnificently, and if he succeeded, then the student of aeronautics does him an injustice and confers on the Brothers Wright an honour which, in spite of the value of their work, they do not deserve. There was one earlier than Ader, Alphonse Penaud, who, in the face of a lesser disappointment than that which Ader must have felt in gazing on the wreckage of his machine, committed suicide; Ader himself, rendered unable to do more, remained content with his achievement, and with the knowledge that he had played a good part in the long search which must eventually end in triumph. Whatever the world might say, he himself was certain that he had achieved flight. This, for him, was perforce enough.

Yet, driven thus to the more serious aspect of the work, they found in the step its own reward, for the work of itself drew them on and on, to the construction of measuring machines for the avoidance of error, and, to the making of series after series of measurements, concerning which Wilbur wrote in 1908 (in the Century Magazine) that ‘after making preliminary measurements on a great number of different shaped surfaces, to secure a general understanding of the subject, we began systematic measurements of standard surfaces, so varied in design as to bring out the underlying causes of differences noted in their pressures. Measurements were tabulated on nearly fifty of these at all angles from zero to 45 degrees, at intervals of 2? degrees. Measurements were also secured showing the effects on each other when surfaces are superposed, or when they follow one another.

Their work is briefly described in a little pamphlet by F. J. Stringfellow, entitled A few Remarks on what has been done with screw-propelled Aeroplane Machines65 from 1809 to 1892. The author writes with regard to the work that his father and Henson undertook:—

The new research institute will develop the advanced technology for smart supply chains and boundaryless retail, as well as exploring the industry model at the core of smart cities.

The Curtiss biplane, as flown by Glenn Curtiss at the Rheims meeting, was built with a bamboo framework, stayed by means of very fine steel-stranded cables. A—then—novel feature of the machine was the moving of the ailerons by the pilot leaning to one side or the other in his seat, a light, tubular arm-rest being pressed183 by his body when he leaned to one side or the other, and thus operating the movement of the ailerons employed for tilting the plane when turning. A steering-wheel fitted immediately in front of the pilot’s seat served to operate a rear steering-rudder when the wheel was turned in either direction, while pulling back the wheel altered the inclination of the front elevating planes, and so gave lifting or depressing control of the plane.

Such information as is given here concerning the Wright Brothers is derived from the two best sources available, namely, the writings of Wilbur Wright himself, and a lecture given by Dr Griffith Brewer to members of the Royal Aeronautical Society. There is no doubt that so far as actual work in connection with aviation accomplished by the two brothers is concerned, Wilbur Wright’s own statements are the clearest and best available. Apparently Wilbur was, from the beginning, the historian of the pair, though he himself would have been the last to attempt to detract in any way from the fame that his brother’s work also deserves. Throughout all their experiments the two were inseparable, and their work is one indivisible whole; in fact, in every department of that work, it is impossible to say where Orville leaves off and where Wilbur begins.

The matter was taken up on its scientific side very early in America, experiments in Philadelphia being almost simultaneous with those of the Mongolfiers in France. The flight of Rozier and d’Arlandes inspired two members of the Philadelphia Philosophical Academy to construct a balloon or series of balloons of their own329 design; they made a machine which consisted of no less than 47 small hydrogen balloons attached to a wicker car, and made certain preliminary trials, using animals as passengers. This was followed by a captive ascent with a man as passenger, and eventually by the first free ascent in America, which was undertaken by one James Wilcox, a carpenter, on December 28th 1783. Wilcox, fearful of falling into a river, attempted to regulate his landing by cutting slits in some of the supporting balloons, which was the method adopted for regulating ascent or descent in this machine. He first cut three, and then, finding that the effect produced was not sufficient, cut three more, and then another five—eleven out of the forty-seven. The result was so swift a descent that he dislocated his wrist on landing.

A subsequent report of the Board of Ordnance and Fortification to the Secretary of War embodied the144 principal points in Major Macomb’s report, but as early as March 3rd, 1904, the Board came to a similar conclusion to that of the French Ministry of War in respect of Clement Ader’s work, stating that it was not ‘prepared to make an additional allotment at this time for continuing the work.’ This decision was in no small measure due to hostile newspaper criticisms. Langley, in a letter to the press explaining his attitude, stated that he did not wish to make public the results of his work till these were certain, in consequence of which he refused admittance to newspaper representatives, and this attitude produced a hostility which had effect on the United States Congress. An offer was made to commercialise the invention, but Langley steadfastly refused it. Concerning this, Manly remarks that Langley had ‘given his time and his best labours to the world without hope of remuneration, and he could not bring himself, at his stage of life, to consent to capitalise his scientific work.’

The applications did not materialise, as was only to be expected in view of the vagueness of the proposals. Colombine did some advertising, and Mr Roebuck expressed himself as unwilling to proceed further in the venture. Henson experimented with models to a certain extent, while Stringfellow looked for funds for the construction of a full-sized monoplane. In November of 1843 he suggested that he and Henson should construct a large model out of their own funds. On Henson’s suggestion Colombine and Marriott were bought out as regards the original patent, and Stringfellow and Henson entered into an agreement and set to work.

An important development in connection with the inspection and testing of aircraft parts, particularly in the case of metal, was the experimental application of X-ray photography, which showed up latent defects, both in the material and in manufacture, which would otherwise have passed unnoticed. This method was also used to test the penetration of glue into the wood on each side of joints, so giving a measure of the strength;312 and for the effect of ‘doping’ the wings, dope being a film (of cellulose acetate dissolved in acetone with other chemicals) applied to the covering of wings and bodies to render the linen taut and weatherproof, besides giving it a smooth surface for the lessening of ‘skin friction’ when passing rapidly through the air.

Field trials were first attempted in 1893, and Langley blamed his launching apparatus for their total failure. There was a brief, but at the same time practical, success in model flight in 1894, extending to between six and seven seconds, but this only proved the need for strengthening of the wing. In 1895 there was practically no advance toward the solution of the problem, but the flights of May 6th and November 28th, 1896, were notably successful. A diagram given in Langley’s memoir shows the track covered by the aerodrome on these two flights; in the first of them the machine made three complete circles, covering a distance of 3,200 feet; in the second, that of November 28th, the distance covered was 4,200 feet, or about three-quarters of a mile, at a speed of about thirty miles an hour.

The first fully loaded run was made in a dead calm with 150 lbs. steam pressure to the square inch, and there was no sign of the wheels leaving the steel track. On a second run, with 230 lbs. steam pressure the machine seemed to alternate between adherence to the lower and upper tracks, as many as three of the outrigger130 wheels engaging at the same time, and the weight on the steel rails being reduced practically to nothing. In preparation for a third run, in which it was intended to use full power, a dynamometer was attached to the machine and the engines were started at 200 lbs. pressure, which was gradually increased to 310 lbs per square inch. The incline of the track, added to the reading of the dynamometer, showed a total screw thrust of 2,164 lbs. After the dynamometer test had been completed, and everything had been made ready for trial in motion, careful observers were stationed on each side of the track, and the order was given to release the machine. What follows is best told in Maxim’s own words:—

The discovery is of that peculiar nature, so simple in principle yet so perfect in all the ingredients required61 for complete and permanent success, that to promulgate it at present would wholly defeat its development by the immense competition which would ensue, and the views of the originator be entirely frustrated.

‘In the meantime an engine was also made for the smaller model, and a wing action tried, but with poor results. The time was mostly devoted to the larger model, and in 1847 a tent was erected on Bala Down, about two miles from Chard, and the model taken up one night by the workmen. The experiments were not so favourable as was expected. The machine could not support itself for any distance, but, when launched off, gradually descended, although the power and surface should have been ample; indeed, according to latest calculations, the thrust should have carried more than three times the weight, for there was a thrust of 5 lbs. from the propellers, and a surface of over 70 square feet to sustain under 30 lbs., but necessary speed was lacking.’

责编:

图片新闻